Using the Gravity Model to Estimate the Spatial Spread of Vector-Borne Diseases
نویسندگان
چکیده
The gravity models are commonly used spatial interaction models. They have been widely applied in a large set of domains dealing with interactions amongst spatial entities. The spread of vector-borne diseases is also related to the intensity of interaction between spatial entities, namely, the physical habitat of pathogens’ vectors and/or hosts, and urban areas, thus humans. This study implements the concept behind gravity models in the spatial spread of two vector-borne diseases, nephropathia epidemica and Lyme borreliosis, based on current knowledge on the transmission mechanism of these diseases. Two sources of information on vegetated systems were tested: the CORINE land cover map and MODIS NDVI. The size of vegetated areas near urban centers and a local indicator of occupation-related exposure were found significant predictors of disease risk. Both the land cover map and the space-borne dataset were suited yet not equivalent input sources to locate and measure vegetated areas of importance for disease spread. The overall results point at the compatibility of the gravity model concept and the spatial spread of vector-borne diseases.
منابع مشابه
Climate Changes and Vector-Borne Diseases With an Emphasis on Parasitic Diseases: A Narrative Review
Background and Objectives: The issue of climate change has currently become a critical concern for the global community as it affects the transmission and spread of a wide range of diseases. This study aims to examine the literature and scientific evidence concerning the impact of climate change on vector-borne diseases. Methods: In this review research, a comprehensive search and review of te...
متن کاملModeling and analysis of leishmaniasis distribution process using multilayer perceptron neural network and support vector regression (Case study: villages of Isfahan province)
Villages located in Isfahan province are one of the areas prone to the spread of cutaneous leishmaniasis, which is characterized by the occurrence of wounds on the skin. To predict the future prevalence of cutaneous leishmaniasis, Continuous monitoring of the spatial distribution of this disease is essential. Disease modeling was performed using two machine learning algorithms called support ve...
متن کاملA gravity model for the spread of a pollinator-borne plant pathogen.
Many pathogens of plants are transmitted by arthropod vectors whose movement between individual hosts is influenced by foraging behavior. Insect foraging has been shown to depend on both the quality of hosts and the distances between hosts. Given the spatial distribution of host plants and individual variation in quality, vector foraging patterns may therefore produce predictable variation in e...
متن کاملChallenges of Vector-borne Diseases Control at the Flood Disaster of Khuzestan Province in 2019 According to Health Center Experts
Background and Aim: Natural disasters such as floods provide the basis for spreading communicable diseases by causing environmental changes. According to health center experts, this study aims to investigate the common infectious diseases during floods in Khuzestan Province in 2009 and the strategies and challenges to control them. Methods: This research is a descriptive survey using a qualita...
متن کاملNew Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کامل